
Retroweaver – A Developer's Guide
 Gotta Get Back In Time

Toby Reyelts

10/2004

Chapter 1: Getting Started

Downloading Retroweaver
If you haven't done so already, you should download the latest version
of Retroweaver and its associated documentation from
http://retroweaver.sf.net.

The Fine Print
Before you begin using Retroweaver, you might like to have your well-
paid lawyers review the BSD-style license for use. (NB: There's
nothing really fine about fine print.)

Copyright (c) February 2004, Toby Reyelts

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of Toby Reyelts nor the names of his contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://retroweaver.sf.net/

Installation
Once you've downloaded retroweaver-<version>.zip, you can unzip
the contents to your favorite folder. When you've finished that process,
you'll be presented with the following set of folders:

• docs – All of the documentation for Retroweaver (including the
Developer's Guide you're reading right now).

• lib – Third party libraries that Retroweaver needs in order to
perform the bytecode weaving. These libraries are only
required during weaving, not deployment, of your application.

• release – Contains the Retroweaver runtime library,
retroweaver-rt-<version>.jar, which you must deploy with
your application. Contains the full Retroweaver application,
retroweaver-<version>.jar, which you use to weave your
application or start the Retroweaver graphical interface. Also
contains retroweaver-all-<version>.jar which includes all
Retroweaver classes along with the required libraries.

• src – All of the Java source code for both the bytecode weaver
and the runtime library. Feel free to browse through here and
send some advice my way.

• src/net/sourceforge/retroweaver/tests – The source for a suite
of test cases that get executed against Retroweaver. If you're
not sure that Retroweaver can handle a particular construct or
condition, write a test case. If you're so inclined, send it my
way. I'd love to include it in Retroweaver's test suite.

• release/retroweaver-tests-<version>.jar – The compiled and
retroweaved classes from the test suite. You can run these to
give yourself warm fuzzies about Retroweaver's behavior.

Chapter 2: An Overview

Why Retroweaver?
Sun has just released their latest and greatest version of the Java
developer's kit – JDK 1.5. There is something that really differentiates
this version from earlier releases, though – new language features.

JDK 1.5 has new support for generics, autoboxing, static imports,
enums, extended for loops, annotations, and varargs. The Java
language has just undergone its largest change ever, and if you're
anything like me, you want to take advantage of all of these new
wonderful enhancements. Unfortunately, if you're anything like me,
you also have some problems that are likely to get in your way:

• JDK 1.5 is a new product, and you or your manager may not
be very fond of relying on untested virtual machines.

• Your product may rely on other 3rd party products that aren't
supported on 1.5 (persistence engines, ui frameworks, and
application servers are common examples).

• Your clients may not be able to install the latest version of the
JVM – a typical scenario for companies that deploy applets or
applications via WebStart.

Retroweaver is a solution to all of these problems. Retroweaver
enables you to develop your product using the new 1.5 Java language,
while retaining binary compatibility with previous VMs – all the way
back to JDK 1.2.

Using Retroweaver
If you've bothered to read this far, you're probably interested in
learning how to use Retroweaver with your own product. The process
is surprisingly easy.

1. Download and install JDK 1.5. (Seriously – it's very tough to develop
Java programs without a Java compiler).

2. Write your source code using all of those new powerful language
features that you love in 1.5.

3. Compile your code and run Retroweaver against the class files. You
can run Retroweaver in a few different ways.

• Use the graphical interface. Just double-click on the executable
jar file, retroweaver-<version>.jar, or execute java -jar
release/retroweaver-<version>.jar. This is a good way to start
getting used to Retroweaver.

• Run Retroweaver from the command line. That looks like:

java -cp release\retroweaver-<version>.jar;lib\asm-
2.2.jar;lib\asm-commons-2.2.jar
net.sourceforge.retroweaver.Weaver -source classes

or when weaving a jar file:

java -cp release\retroweaver-<version>.jar;lib\asm-
2.2.jar;lib\asm-commons-2.2.jar
net.sourceforge.retroweaver.Weaver -jar input.jar output.jar

• Add Retroweaver to your build script. This is the best way to
integrate Retroweaver into your day to day development cycle.
Retroweaver comes with a built-in Ant task –
net.sourceforge.retroweaver.ant.RetroWeaverTask. See the
Appendix for details.

• Weave classes on the fly at runtime with WeaveRunner, a
custom ClassLoader weaving classes at runtime:
java -cp release\retroweaver-all-<version>.jar
net.sourceforge.retroweaver.WeaveRunner -cp <application class
path> <Main Class> <arguments>

4. Deploy your application, including the Retroweaver runtime library,
retroweaver-rt.jar.

Chapter 3: Reference Verification

Excuse Me?
While cross-compiling your code to another virtual machine, you need
to make sure you don't reference runtime code that doesn't exist in
your target VM. Prior to JDK 1.5, this was most easily achieved by
using the switch -Xbootclasspath/p, and pointing it to the rt.jar of your
target VM. The java compiler would complain if you referenced classes,
methods, or fields that didn't exist in the target VM. For lack of a
better name, we'll call this process, reference verification.

Now What?
The bad news is that, due to the nature of Retroweaver, it is not
possible to use the bootclasspath switch to perform reference
verification in conjunction with Retroweaver. The good news is that
Retroweaver comes with its own reference verifier. Retroweaver's
reference verifier will warn you if any of your code references a class,
method, or field that it can't find in your target VM. To turn on
Retroweaver's reference verifier, specify the -verifyrefs switch. You'll
have to pass the classpath that contains your target JDK's rt.jar,
Retroweaver's runtime library, and all of the classes that your
application uses. For example,

java -cp release\retroweaver-<version>.jar;lib\asm-
2.2.jar;lib\asm-commons-2.2.jar net.sourceforge.retroweaver.Weaver
-source classes -verifyrefs
c:\java\jdk1.4\lib\rt.jar;release\retroweaver-rt-
<version>.jar;compiled-classes;lib\lib1.jar;lib\lib2.jar

When Retroweaver encounters a reference to a class/method/field that
can't be located on the classpath specified with -verifyrefs, it issues a
warning, so you can locate and correct the issue.

Chapter 4: The Dirty Details

Why This Chapter?
Since Retroweaver functions by bytecode enhancement, it operates
more-or-less, like a black box. This section strives to assuage any
concerns that people may have about this technique, by explaining the
underlying pinnings of Retroweaver, while avoiding the tediousness of
reviewing the entire source code base.

Why Bytecode Enhancement?
There were a set of design approaches available to achieving
Retroweaver's end goal – 1.5 source code running on an earlier virtual
machine. The top approaches, aside from bytecode enhancement,
were:

• Generate 1.4 source code from 1.5 source code.

While this approach sounds nice, it's simply infeasible. It's just not
possible to generate 1.4 source code, for all possible language
constructs in 1.5. Sun's compiler team has confirmed this, itself.

• Develop a 1.5 compiler that can target 1.4.

This is definitely a valid approach. In fact, given all the time in the
world, this is probably the best approach. The primary problem,
here, is that developing a 1.5 compiler is a significantly complex
task – much moreso than just the development of Retroweaver. For
example, to date, there are still significant bugs in Sun's own 1.5
compiler. Eventually, I believe we will see compilers for 1.5, that
also support -target 1.4. Until then, there is Retroweaver.

Step By Step
The changes that Retroweaver makes to class files, can be roughly
divided into two categories – format changes and runtime changes.

Format changes are changes which are required due to specification
updates in the JVM. They include:

1. Replacement of “+” characters with “$” characters in identifiers.

The new JDK 1.5 specification has relaxed the rules concerning Java
language identifiers, to allow “+” characters. Retroweaver replaces
the “+” characters with “$” characters, which are legal in earlier
virtual machines. Retroweaver also renames class files which have
“+” characters in their names.

2. Replacement of LDC and LDC_W instructions which have a
CONSTANT_Class target.

In JDK 1.5, these two instructions have been updated to work on
class literals, for example, String.class. Prior to JDK 1.5, a
programmer's use of a class literal resulted in the compiler
generation of a method to execute a Class.forName. Retroweaver
preserves the older behavior.

3. Replacement of Synthetic access specifiers with Synthetic attributes.

In JDK 1.5, Synthetic access specifiers were introduced to replace
Synthetic attributes and reduce the size of class files. Retroweaver
reverses the operation by replacing Synthetic access specifiers with
Synthetic attributes.

4. Removal of JDK 1.5 bit assignments from access specifiers.

The JVM specification (second edition) states that unassigned bits of
the access specifiers for classes, methods, and fields should be set
to 0 by compilers and bytecode generators. It also states that JVMs
must ignore those bits, but to be perfectly compliant, Retroweaver
resets them to 0.

Runtime changes are changes which are required due to the addition
of new classes to the JDK runtime library. They include:

1. Replacement of calls to StringBuilder with StringBuffer.

StringBuilder is a new class introduced into 1.5 as an
unsynchronized version of StringBuffer that maintains the same
interface as StringBuffer. The JDK 1.5 compiler generates calls to
StringBuilder, when you use the “+” operator on Strings.
Retroweaver replaces those calls to StringBuilder, with calls to

StringBuffer.

2. Replacement of calls to <PrimitiveWrapper>.valueOf(<primitive>)
methods.

In JDK 1.5, the new autoboxing specification prompted the
introduction of new valueOf() methods to the primitive wrapper
classes, for example, Long.valueOf(long). These methods facilitate
autoboxing, not only by boxing a primitive value, but by supporting
other features of the autoboxing specification (i.e.
mandated/optional caching behavior). Retroweaver replaces calls to
these methods with calls to its own runtime library, which
implements autoboxing according to the specification.

3. Replacement of references to java.lang.Enum.

The new support for first class enumerations in JDK 1.5 requires a
base enum class, java.lang.Enum. Retroweaver replaces references
to java.lang.Enum with
net.sourceforge.retroweaver.runtime.Enum_, which is primarily a
clone of java.lang.Enum. This means that enum values are made
subclasses of Enum_, and methods which would operate on Enum,
operate on Enum_, instead. Enum_ implements the enum behavior
specified in the enumeration specification, including guaranteed
singleton behavior, even in the face of serialization.

4. Replacement of references to java.lang.Iterable.

The new extended for loop syntax in JDK 1.5 required a new
interface, java.lang.Iterable. Retroweaver replaces references to
java.lang.Iterable with its own runtime class,
net.sourceforge.retroweaver.runtime.Iterable_. This allows
developers to continue to use the extended for loop and to even
create implementations of Iterable, as they would with JDK 1.5.

Other Features
“Wait,”, you say, “I thought Retroweaver also supports static imports,
varargs, and generics, but I saw no mention of them, here.”

It is true that Retroweaver does support these features, it's just that

these features require no special support from Retroweaver.

The new static import language feature is just a compiler directive. It
has no effect whatsoever on generated class files.

The new varargs language feature introduces a new access specifier,
but that access specifier is used only by JDK 1.5 compilers and ignored
by earlier compilers. Vararg methods will appear as vararg under 1.5,
while appearing with array arguments under previous compilers, as
you would expect. For example,

public void foo(String...) {

}

would appear as

public void foo(String[]) {

}

The addition of generics requires a new Signature attribute, which,
again, is only used by JDK 1.5 compilers and ignored by earlier
compilers. Generic methods appear generic under 1.5, but appear as
their type-erased equivalents under previous compilers. For example,

public class Foo<T extends Comparable> {

 public void foo(T t) {

 }

}

would appear as

public class Foo {

 public void foo(Comparable t) {

 }

}

Chapter 5: Pitfall Harry

Frequently Asked Questions

• Why am I getting a NoClassDefFoundError/ClassNotFoundException?

It depends.

Is it for a class that is in net.sourceforge.retroweaver.runtime? You
should make sure you're including retroweaver-rt-<version>.jar in
your application class path.

Is it for one of the JDK classes? If you're using a class that is new to
JDK 1.5, stop. Retroweaver has support for a few special classes
(java.lang.Enum, java.lang.Iterable, and java.lang.StringBuilder),
but that's it. You can't use any other classes that are new to JDK
1.5. You can turn on the -verifyrefs option on Retroweaver to
receive warnings when you reference classes, fields, or methods
that don't exist in the VM that you are targetting.

• Why am I getting a NoSuchMethodException/Error or a
NoSuchFieldException/Error?

Most likely, you're using a class that did exist prior to JDK 1.5, but a
new method/field for that class that didn't exist prior to JDK 1.5. You
can't use new JDK 1.5 classes/methods/fields in an earlier JVM. You
can turn on the -verifyref option on Retroweaver to receive warnings
when you reference classes, fields, or methods that don't exist in the
VM that you are targetting.

• How does serialization for enums work?

The new enum specification requires changes to the serialization
specification, which are outside of the reach of Retroweaver. This
means that serialization of enums behaves correctly, but differently,
between 1.5 and earlier VMs. In other words, you can't just naively
exchange enums between 1.5 and earlier VMs via serialization.

• Why do I get a java.lang.IncompatibleClassChangeError?

Does it happen when you are using an Iterable? Currently,
Retroweaver is unable to handle an assignment of a JDK 1.5 class
that implements java.lang.Iterable to a java.lang.Iterable reference.
See the test case, ItTest.java for more details. You can workaround
this problem by wrapping the reference to the JDK 1.5 class in your
own Iterable adapter.

Chapter 6: Appendix

Ant Task Documentation

Description
net.sourceforge.retroweaver.ant.RetroWeaverTask

Runs Retroweaver on a directory or set of directories to convert
classes produced by a JDK 1.5 compliant compiler to a class file format
supported by older JVM's.

Parameters

Attribute Description Required

srcdir The directory containing classes to
process.

One of either
srcdir, inputjar or
a nested fileset
element.

destdir The destination directory for the
processed classes.

No. If not
specified, the
processed classes
overwrite the
source classes.

inputjar The jar file to proces.

One of either
srcdir, inputjar or
a nested fileset
element.

outputjar
The jar file for the processed
classes.

Yes if inputjar is
specified.

classpath

The classpath for reference
verification. For example,
retroweaver-rt-
<version>.jar;c:\java\jdk1.4\lib\rt.
jar;my-classes

No. If not
specified,
Retroweaver will
not verify
references.

verify

Indicates whether the verifier
should be called. Note that the
verifier is skipped if classpath is not
defined.

No. Defaults to
true.

target The target version as either "1.2",
"1.3", or "1.4".

No. Defaults to
"1.4".

stripSignatures
Indicates whether the generic
signatures should be stripped. No. Defaults to

false.

stripAttributes

Indicates whether the custom
Retroweaver attributes should be
stripped.

No. Defaults to
false.

lazy

Indicates if classes that already
have the target version should be
skipped. If the destination directory
is different from the source
directory, such classes are copied
to the destination with preserved
timestamp.

No. Defaults to
true.

failonerror

Indicates if the build should fail if
an error occurs while processing
classes. If false, a warning is
logged but the build continues.

No. Defaults to
true.

verbose Indicates if the names of processed
files should be logged.

No. Defaults to
false.

Parameters specified as nested elements

fileset

One ore more filesets can be specified instead of (or in addition to) the
srcdir attribute. Make sure that the fileset only includes class files.

Examples

Declare the Retroweaver class. The example assumes that the
property "retroweaver.home" points to the RetroWeaver
installation.
 <taskdef name="retroweaver"
classname="net.sourceforge.retroweaver.ant.RetroWeaverTask">
 <classpath>
 <fileset dir="${retroweaver.home}/lib" includes="**/*"/>
 <pathelement location="${retroweaver.home}/release/retroweaver-
<version>.jar"/>
 </classpath>
 </taskdef>

Convert a set of classes in a single directory to JDK 1.4 compatible format.
 <target name="weave" depends="compile">
 <retroweaver srcdir="classes"/>
 </target>

Convert a set of classes, using a fileset, to JDK 1.3 compatible format in
another directory.
 <target name="weave" depends="compile">

 <mkdir dir="classes-13"/>
 <retroweaver destdir="classes-13" target="1.3">
 <fileset dir="classes">
 <include name="**/*.class"/>
 </fileset>
 </retroweaver>
 </target>

Chapter 6: Acknowledgments

Thanks Go To

• My wife, who continually puts up with my pursuit of all things
arcane.

• Neal Gafter, who was responsible for providing most of the
information that made Retroweaver possible.

• Sean Shubin, who has donated some usability improvements to
Retroweaver.

• Gunnar Grim, who has donated the Ant task.

	Retroweaver – A Developer's Guide
	Chapter 1: Getting Started
	Downloading Retroweaver
	The Fine Print
	Installation

	Chapter 2: An Overview
	Why Retroweaver?
	Using Retroweaver

	Chapter 3: Reference Verification
	Excuse Me?
	Now What?

	Chapter 4: The Dirty Details
	Why This Chapter?
	Why Bytecode Enhancement?
	Step By Step
	Other Features

	Chapter 5: Pitfall Harry
	Frequently Asked Questions

	Chapter 6: Appendix
	Ant Task Documentation

	Description
	Parameters
	Parameters specified as nested elements
	fileset

	Examples
	Declare the Retroweaver class. The example assumes that the property "retroweaver.home" points to the RetroWeaver installation.
	Convert a set of classes in a single directory to JDK 1.4 compatible format.
	Convert a set of classes, using a fileset, to JDK 1.3 compatible format in another directory.

	Thanks Go To

